Системы нейтрализации выхлопных газов машины - Журнал Автомобилиста
Art-lg.ru

Журнал Автомобилиста
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Нейтрализатор отработанных газов

Постоянные усилия разработчиков по улучшению процессов сгорания, оптимизации управления системами двигателя достигли определённой точки, при которой требовались новые методы и способы для уменьшения выбросов вредных веществ в атмосферу многочисленными автомобилями. Разработаны и применяются т.н. нейтрализаторы отработанных газов, которые устанавливаются в выпускной системе. В настоящее время используются нейтрализаторы нескольких типов:

  • каталитические;
  • термические;
  • накопительные;
  • и др.

В каталитических процесс нейтрализации интенсифицируется за счёт применения катализаторов, а в термических — за счёт высокой температуры с добавлением воздуха к отработанным газам.

Каталитические нейтрализаторы

Каталитические нейтрализаторы называют окислительными, т.к. они предназначены для окисления СО и СН, находящихся в отработанных газах. За короткое время, пока газы проходят через нейтрализатор, все реакции должны завершиться при температуре 250 — 800 град.

При температуре менее 250 град, эффективность нейтрализатора мала, а при температуре выше 1 000 гр. происходит «спекание» мелких кристаллов платины и разрушение активной поверхности, т.е. дезактивация нейтрализатора.

Рис. Окислительный нейтрализатор

На рисунке представлена конструкция каталитического нейтрализатора. 1 — керамическая пористая основа с нанесённым покрытием из платины и родия, 2 — изоляционные и теплоотводящие компоненты, 3 — датчик содержания кислорода в отработанных газах. Дезактивация катализатора особенно велика в первые 20 тыс.км. Особенно быстро дезактивация наступает при использовании этилированного бензина. Повторим, что рабочая температура в нейтрализаторе 400-700 гр., поэтому для быстрого прогрева и эффективной работы нейтрализатор располагают ближе к выпускному коллектору. Такое расположение является положительным фактором при холодном пуске и прогреве двигателя — нейтрализатор быстрее начинает работать, но при этом повышается его эксплуатационная температура, а это может способствовать дезактивации катализатора.

Блок-носитель каталитического нейтрализатора делают из керамики сотовой структуры, гофрированной фольги из нержавеющей стали или в виде сферических гранул из оксида алюминия, которые укладывают в металлический цилиндр, закрытый по торцам сетками. На поверхность носителя наносится каталитический материал и помещают внутрь корпуса из нержавеющей жаропрочной стали. Между блоком-носителем и корпусом ставится терморасширяющаяся прокладка. Для уменьшения вибрационных нагрузок нейтрализатор присоединяется шарнирными соединениями или компенсаторами колебаний.

Рис. Эффективная зона работы нейтрализатора

На рисунке показана зона эффективной работы нейтрализатора. Заштрихованная область — зона «стехиометрической» смеси, по оси абсцисс (В) отображено отношение «воздух-топливо», по оси ординат (А)-эффективность работы нейтрализатора.

В зоне «богатых» смесей — от 10 до 14,6 преобладают высокие концентрации оксида азота(NОх) и низкие СО и СН. Нейтрализаторы, преобразующие СО, СН, N0, называют трёхкомпонентными или бифункциональными. Для нейтрализации смеси оксида азота, получающегося в процессе сгорания смеси, используются реакции его восстановления до азота N2 и аммиака NH3. В материалах, служащих катализатором при нейтрализации вредных веществ, используются платина, палладий, родий и др.

Трёхкомпонентные нейтрализаторы являются окислительными и восстановительными. В связи с тем, что состав вредных веществ резко меняется в зависимости от «обогащения» или «обеднения» топливовоздушной смеси, необходимо поддерживать работу двигателя в районе «стехиометрической» смеси.

Для выполнения такой задачи используется электронное управление работой двигателя с системой обратной связи (замкнутая система). Датчики, обеспечивающие работу обратной связи, называются: лямбда зондами (отношение «воздух-топливо») и устанавливаются до и после нейтрализатора, а также термометры газов в зоне процессов нейтрализации и окисления вредных веществ.

Термические нейтрализаторы

Термические нейтрализаторы представляют собой камеру, в которой при высокой температуре окисляются СО и СН. При работе двигателя на обогащенной смеси, требуется подача воздуха перед нейтрализатором. При работе на обеднённой смеси температура будет не высокой и требуется дополнительный прогрев нейтрализатора. Термический нейтрализатор начинает работать при температуре 600 гр, что существенно выше, чем у каталитических нейтрализаторов. Кроме этих требований, нужны более прочные и жаростойкие материалы, стойкость к высокой коррозионной агрессивности. Не получили широкого распространения.

Ранее отмечалось, что нейтрализатор не работает на режимах прогрева двигателя, т.к. температура в нём не достаточно высока, кроме того, двигатель в это время работает на обогащенных смесях и в отработанных газах нет достаточного количества кислорода, необходимого для окисления СН в нейтрализаторе.

Для ускоренного прогрева нейтрализатора уменьшается угол опережения зажиганием, или электрическим подогревом нейтрализатора путём сжигания перед ним топлива в горелке, или подачи воздуха в, поток отработанных газов с помощью специального насоса.

Рис. Методы подогрева нейтрализатора: 1 — топливная форсунка, 2 — нейтрализатор, 3 — свеча для поджигания смеси, 4 — воздушный насос

В некоторых системах используют «стартовый» нейтрализатор, который устанавливается перед или параллельно основному При параллельном расположении весь поток отработанных газов направляется в стартовый нейтрализатор, который быстро прогревается и начинает эффективно работать.

После прогрева двигателя поворотом заслонки поток газов направляется в основной нейтрализатор. На рисунке приведена одна из схем построения системы с параллельным и основным нейтрализаторами.

Рис. Система со стартовым нейтрализатором: 1 — двигатель, 2 — стартовый нейтрализатор, 3 — глушитель, 4 — основной нейтрализатор, 5 — кислородный датчик (лямбда-зонд), 6 — заслонка

При очистке отработанных газах дизельных двигателей внимание уделяется сокращению содержания твёрдых частиц и оксидов азота (NOx). Приведём краткое описание некоторых способов очистки ОГ, применяемых в дизельных двигателях.

Фильтр твёрдых частиц используется для сбора и их дальнейшей регенерации. Используется с окислительным нейтрализатором. Перед и после нейтрализатора и фильтра твёрдых частиц устанавливаются датчики давления и температуры, по которым косвенным способом определяется загрязнение элементов. Далее ЭБУ двигателем переводит работу двигателя на разные режимы для запуска системы регенерации твёрдых частиц.

Накопительный нейтрализатор NOx

Накопительный нейтрализатор NOx собирает на своей поверхности оксиды азота, а затем конвертирует их в азот (N2). При холодном пуске отработанные газы нагреваются для сокращения количества NOx. ЭБУ двигателем периодически обогащает, а затем обедняет рабочую смесь и, тем самым, создаёт условия для разложения оксидов азота.

Что такое жидкость AdBlue?

Жидкость AdBlue представляет собой водный раствор мочевины с определенным содержанием компонентов:

  • Мочевина — 32,5% (по весу), стандартом допускается разброс от 31,8 до 33,2%;
  • Деминерализованная вода — 67,5%.

Жидкость AdBlue изготавливается только из высокоочищенной мочевины и очищенной от минеральных солей воды. В Европе и России действуют стандарты, регламентирующие состав реагента и его характеристики — европейский ISO 22241, основанный на нем российский ГОСТ Р ИСО 22241, а также немецкий DIN 70070.

Жидкость AdBlue хранится в отдельном бачке, расположенном рядом с основным топливным баком. Маркируется данный бачок синей крышкой, которая часто имеет надпись «AdBlue». В среднем расход реагента составляет до 4% от расхода дизельного топлива для легковых автомобилей и до 6% — для грузовых.

Решение для бензиновых двигателей

Системы нейтрализации выхлопных газов автомобиля бывают двухкомпонентными и трехкомпонентными, причем последние появились сравнительно недавно. Как устроена и работает данная система?

Принцип действия

Работа нейтрализатора заключается в окислении токсичных веществ при помощи катализаторов, в результате чего продукты неполного сгорания топлива дожигаются или разлагаются на безвредные химические элементы и вещества.

Активными компонентами (катализаторами) выступают драгоценные металлы — палладий, платина. Популярны и менее затратны катализаторы на основе оксида меди, кобальта, никеля, ванадия, марганца, железа, алюминия. Нередки катализаторы на основе сплавов стали нержавеющей или легированной, бронзы или латуни.

Конструкция

Основные элементы нейтрализатора – корпус из нержавеющей жаропрочной стали, внутренняя поверхность которой выстлана терморасширительной прокладкой. Внутри бака — газоподводящий и отводящий цилиндр и ячеистые соты, на которые нанесен слой вещества — катализатора.

    Ячеистые соты, на которые наносится катализирующий состав, могут быть выполнены из керамики. Такие нейтрализаторы в качестве катализатора используют тонкий слой из драгоценных редких металлов. Это самый дорогостоящий вид систем нейтрализации отработанных газов.

  • Менее дорогой вариант – ячеистые соты, выполненные методом пайки из тонкой металлической фольги с покрытием из одного из видов вышеназванных составов. Такая система более эффективна, ведь площадь ячеистых сот значительно больше, чем у керамических, а следовательно, способно обработать больший объем отработанных газов.
  • Читать еще:  Как навсегда избавиться от страха управления автомобилем

    Устройство в автомобильных системах и порядок работы

    Системы нейтрализации выхлопных газов располагаются в непосредственной близости от ДВС, под днищем транспортного средства. Через шарнирное соединение нейтрализатор подсоединяется к выпускному коллектору с одной стороны, и выхлопной системе – с другой.

    Для обеспечения качественной химической реакции с участием кислорода системы нейтрализации используют воздушные насосы или виброклапаны. При разогреве системы нейтрализации до 400-800 градусов CO (оксид углерода) и CH (углеводороды) под действием катализаторов превращаются в углекислый газ и воду. Близкое расположение нейтрализаторов к ДВС позволяет снизить количество NОх (окисла азота) сразу после запуска двигателя.

    Обратную связь с блоком управления автомобиля нейтрализатору обеспечивают лямбда-зонды, специальные кислородные датчики, или четырехгазовые анализаторы, которые на входе и выходе из системы определяют уровень кислорода и качество очистки выхлопных газов.

    Системы нейтрализации бензиновых двигателей

    Еще при введении норм Евро-3 в методику испытаний добавили режим холодного пуска: измерения производятся сразу же после запуска двигателя при температуре -7 градусов. При отрицательных температурах смесь нужно сильно обогащать – количество СО и СН при этом в выхлопных газах резко возрастает. А не успевший прогреться до рабочей температуры каталитический нейтрализатор практически бездействует.

    Для решения этой проблемы было найдено несколько способов. Первый, сравнительно простой – расположить нейтрализатор не под днищем автомобиля, а поближе к выпускному коллектору. Так появились катколлекторы, в которых два узла объединены в один. Для более быстрого прогрева их изготавливают не из чугуна, а из тонкой стали. Чтобы уменьшить потери тепла предусматривается теплоизоляция.

    Ускорить прогрев нейтрализатора можно и другим способом – добавить в выхлопные газы воздуха с одновременным обогащением топлива. Таким образом «лишняя» горючая смесь, догорая вне цилиндра, повышает температуру отработанных газов, а они, в свою очередь, быстрее нагревают нейтрализатор. В двигателях с непосредственным впрыском того же эффекта добиваются подачей дополнительной порции бензина во время рабочего хода. Есть и третий способ – разогрев нейтрализатора электрическим термоэлементом.

    Повысить точность работы системы нейтрализации удалось добавлением второго датчика кислорода. Первый предназначен для контроля качества смеси – богатая она или бедная. А по показаниям второго контроллер более точно корректирует работу системы топливоподачи. Еще более совершенными являются широкополосные датчики – они способны определять, насколько соотношение воздуха и бензина отличается от стехиометрического.

    Произошли изменения и в материале изготовления сот нейтрализатора. Мы привыкли к тому, что их изготавливают из керамики. Но она имеет ряд недостатков – в силу своей хрупкости не переносит тряски и ударов, быстро разрушается некачественным топливом или в случае нарушений в работе ЭСУД. В настоящее время все больше применяются соты из металлической проволоки. Они медленнее прогреваются и имеют меньшую рабочую поверхность, зато легко переносят механические воздействия и высокие температуры. Очень важно также то, что металлические соты создают намного меньшее сопротивление потоку выхлопных газов.

    Еще одну проблему пришлось решать для современных двигателей с непосредственным впрыском, которые способны работать на бедных смесях. При этом достигается заметная экономия топлива, однако количество оксидов азота в выхлопных газов также значительно возрастает. Обычный нейтрализатор не в состоянии с ними справиться. Поэтому в выпускную систему дополнительно вводится NO-накопитель. Конструктивно он практически не отличается от обычного нейтрализатора, за исключением веществ, которыми покрываются его соты. Оксиды калия, стронция, циркония, кальция, лантана, бария задерживают оксиды азота. Периодически рабочая смесь обогащается, и накопленные вредные вещества выжигаются, разлагаясь при этом на азот и углекислый газ. Располагается накопитель после нейтрализатора, так как для его работы нужна более низкая температура (около 400 градусов).

    Системы нейтрализации дизельных двигателей

    Другой подход нужен к дизелям. Здесь приходится бороться с углеводородами, оксидами азота и сажей (твердыми частицами). Сажевые фильтры придуманы давно. В первых конструкциях накопившуюся сажу периодически выжигали при температуре около 600 градусов, кратковременно обогащая смесь. Но при этом увеличивался выброс других вредных веществ. Поэтому в современных конструкциях сажевый фильтр объединили с окислительным нейтрализатором. Одно устройство и оксиды азота разлагает, и сажу сжигает, причем при более низкой температуре (около 250 градусов).

    Для очистки выхлопа грузовиков дополнительно применяется технология SCR (Selective Catalitic Reduction). Ее суть – периодический впрыск в нейтрализатор раствора мочевины (AdBlue). Там она превращается в аммиак и вступает в реакцию с оксидами азота. В результате образуются безвредные азот и вода.

    Однако возможности ученых и изобретателей не безграничны. Нормы Евро-6, по всей видимости, – предел, достижимый современными ДВС. А дальше придется искать другие экологически чистые источники энергии.

    Практические рекомендации

    Во время и после работы двигателя корпус нейтрализатора имеет достаточно высокую температуру. В связи с этим, во избежание пожара, не следует парковать автомобиль над легко воспламеняющимися предметами, например сухими листьями, травой, бумагой и т.д.

    Следует соблюдать основные правила, направленные на предупреждение ситуации, когда в нейтрализатор может попасть значительное количество несгоревшего топлива. В этом случае возможная вспышка может привести к его разрушению.

    Наиболее общие рекомендации таковы:

    • не следует бесполезно крутить двигатель стартером длительное время;
    • нельзя пускать двигатель путем буксировки. Следует использовать метод “прикуривания” от другого автомобиля;
    • запрещается проверять работу цилиндров, отключая свечи зажигания.
    • при перебоях в работе системы зажигания не допускайте работы двигателя с высокой частотой вращения коленвала до устранения неисправности;
    • не заливайте моторное масло сверх максимального уровня. Излишки масла, попав в каталитический нейтрализатор, могут повредить покрытие или полностью разрушить его.

    Типы эмуляторов Adblue

    Эмуляторы Adblue были разработаны сразу же после введения стандарта для грузовиков типа EURO 4. За годы работы конструкция и программное обеспечение эмуляторов было полностью переработано и в настоящее время их можно приобрести для автомобилей типа EURO 4, EURO 5 и EURO 6.

    Какие эмуляторы Adblue мы можем предложить

    В настоящее время компания ProUnit производит эмуляторы Adblue практически для любых моделей коммерческого транспорта. Все наши эмуляторы, включая эмуляторы первого поколения, разработаны и изготовлены в России из европейских и американских комплектующих, таким образом, мы обеспечиваем и гарантируем высокое качество нашей продукции. Наши эмуляторы Adblue подходят для грузовых автомобилей и двигателей производства DAF, MAN, Iveco, Scania, Volvo, Mercedes-Benz, FORD, Renault и других. Наша компания первая на рынке разработала и ввела в эксплуатацию приборы взаимодействующие с системами экологического класса EURO 6 для автомобилей Volvo, Renault и MAN. Наша команда поддерживает тесную связь со многими официальными дилерами грузовиков, что позволяет нам получать самую точную информацию о работе эмуляторов из первых уст.

    Мы поможем подобрать эмулятор для вашего автомобиля здесь

    Каталитическое обезвреживание выхлопных газов тяжёлой техники

    Тарарыкин А.Г., Успенская А.Ю.

    Что служит основным источником загрязнения воздуха?

    В общем деле загрязнения атмосферы вследствие человеческой деятельности, двигатели внутреннего сгорания (ДВС), безусловно, находятся на первом месте. И не просто лидируют, а значительно опережают все остальные вместе взятые техногенные источники. «Первенство» объясняется просто подавляющим численным преимуществом именно этих загрязнителей, по сравнению с суммой всех остальных техногенных источников.

    Бензиновые ДВС

    Относительно «малотоксичный» бензиновый ДВС, кроме полезной работы, «производит» вредные выбросы в атмосферу, лишь из того, что у него имеется в бензобаке. Поэтому в выхлопе бензинового двигателя содержится какое-то количество недогоревшего топлива (СxНy) и угарного газа (СО). Для успешного их окисления в нейтрализаторе бензинового ДВС существуют вполне благоприятные условия:

    вредные продукты – легко окисляемы, а необходимый для реакции каталитического окисления (сжигания) кислород в достаточном количестве присутствует в выхлопе двигателя.

    Поэтому, нормально отрегулированный бензиновый двигатель, оснащённый каталитическим нейтрализатором выхлопных газов, достаточно легко и надёжно окисляет вредные примеси до безопасных уровней: углекислого газа (CO2) и воды (H2O):

    Читать еще:  Что делать при получении ошибочного штрафа

    Дизельный двигатель существенно вреднее своего бензинового «собрата»

    Как источник загрязнения атмосферы, дизельный ДВС существенно более опасен. И дело вовсе не в распространенном заблуждении, что дизельное топливо (в просторечии солярка), якобы – хуже или грязнее бензинов высоких экологических стандартов.

    Дизельный ДВС также, как и работающий на бензине, разумеется, обеспечивает поступление в атмосферу стандартного набора из угарного газа и остатков недогоревшего топлива. К сожалению этим дело не ограничивается. Повышенная опасность дизельных ДВС «обеспечивается» ещё двумя дополнительными и абсолютно объективными причинами. Первая причина. Более высокие параметры работы дизеля, а именно – давление и температура в цилиндрах уже достаточны для запуска процесса химического синтеза высокотоксичного «букета» – оксидов азота, общей формулы (NОх).

    Причём сырьём для этого химического процесса, служат кислород (О2) и азот (N2), то есть обычный чистый воздух, потребляемый дизельным двигателем для работы:

    Ни качество топлива, ни регулировки двигателя, или какиелибо другие параметры не способны отменить законы химии и термодинамики при работе дизельного ДВС. Цилиндры двигателя становятся «химическими реакторами», синтезирующими одни из самых токсичных видов атмосферных загрязнений непосредственно из чистого воздуха.

    Вторая причина повышенной опасности. В то время как нейтрализация выхлопа бензинового ДВС – это окисление примесей имеющимся в достатке кислородом, нейтрализация же оксидов азота NOx – это строго противоположный процесс химического восстановления. И присутствие кислорода в выхлопе двигателя препятствует процессу нейтрализации, вплоть до полного его прекращения. Таким образом, при каталитической нейтрализации токсичных продуктов дизельного ДВС, нужно организовать протекание в нейтрализаторе двух, строго говоря, несовместимых процессов – окисления и восстановления одновременно. Тем не менее, современные разработки катализаторов уже дают примеры достаточно результативного обезвреживания выхлопа дизельных ДВС.

    Дизельные двигатели карьерной, дорожной и строительной техники

    Дизельный ДВС грузового автомобиля, равномерно двигающегося по карьерной дороге или шоссе или его стационарный аналог, например, работающий в составе дизель-электрогенератора, основное время работы выдают полезную мощность в стационарном режиме.

    Существенно снизить вред, наносимый окислами азота организму человека и окружающей среде, в таком случае возможно с помощью современных каталитических нейтрализаторов, например работающих по технологии Селективного Каталитического Восстановления (SCR), где используются специальные катализаторы или даже химические добавкиреагенты.

    Совсем иное дело – работающий экскаватор, оснащённый дизельной силовой установкой. Назвать эксплуатацию его дизельного двигателя «нестационарной» было бы сильным преувеличением: мгновенный набор мощности, остановки, вибрации, рывки и удары, и снова остановки. Ни о каких оптимальных регулировках работы двигателя, здесь не может быть и речи. Процесс дозирования и смешения реагентов, как и сам химический процесс нейтрализации – инерционны, и для режимов работы тяжёлой горной техники – неприменимы по определению. Видимо поэтому на экскаваторах, грейдерах, гидромолотах даже ведущие мировые производители нейтрализаторы не устанавливают, предполагая, что свежий ветер стройки и карьера, способен разогнать облака токсичных выхлопов.

    Наихудший вариант – дизельные двигатели тяжёлой техники, помещенные в шахту, тоннель, глубокий карьер

    В ситуации закрытого объёма (тоннель, шахта, глубокий разрез) все ядовитые компоненты выброса остаются в призабойном пространстве работы машины, где свежего ветра – не предвидится. Даже качественная вентиляция – не способна полностью устранить проблему локальных избыточных концентраций токсичных веществ. А проблема из области экологии переходит в область здоровья и безопасности людей.

    Существуют ли способы разрешения этой проблемы?

    И всё-таки, устранение проблемы возможно с помощью каталитических технологий очистки выхлопных газов ДВС.

    Для этого достаточно использовать грамотно спроектированный каталитический реактор-нейтрализатор, устанавливаемый вместо штатного глушителя.

    В корпусе нейтрализатора располагается перфорированная корзина, куда засыпается гранулированный катализатор (ШПК-1), изготавливаемый на основе специального шарикового носителя с платиной в качестве активного каталитического элемента.

    В комплексе это позволяет преодолеть большинство трудностей, возникающих при эксплуатации в замкнутых объёмах шахт и тоннелей таких сложных объектов, как тяжёлая горная техника. Механические воздействия – вибрации и удары – не сильно сказываются на работоспособности шарикового катализатора. Дымовые выбросы элементарной сажи компенсируются самоочищающимся действием вибрирующего слоя катализатора. Локальные термические перегревы в сочетании с выбросом водяных паров не способны привести к растрескиванию шарикового носителя, как это бывает с монолитными керамическими блоками сотовой структуры, где имеются узкие длинные микроканалы, которые помимо растрескивания, могут забиваться сажей и коксовыми отложениями.

    Отработанная конструкция самого реактора, предусматривающая гранулированную засыпку, исключает необходимость в специальных уплотнениях блоков, термокомпенсациях и прочих ухищрениях. А если нет уплотнений, то, следовательно, нечему и разрушаться, создавая каналы, через которые отработанные газы выбрасываются в атмосферу неочищенными. Такая система проверена несколькими десятилетиями успешной эксплуатации нейтрализаторов.

    Служит ли каталитический нейтрализатор панацеей, снимающей все проблемы?

    Условия эксплуатации, которые рассмотрены в данной статье, не могут принести полного устранения проблемы очистки и токсичных выхлопов. Однако, такие компоненты как угарный газ (СО) и остатки топлива (СХНy) могут быть нейтрализованы практически полностью, а объёмы выбросов наиболее сложных – оксидов азота, за счёт высокого качества катализатора реально снижаются на 15–40%.

    Несколько сотен единиц работающей в нашей стране техники, оснащённой такими нейтрализаторами, реально и ежедневно подтверждают это.

    Химическая очистка выхлопных газов

    Итак, сажа задержана. Осталось предельно ограничить воздействие других не менее вредных компонентов выхлопа. Для этого служит нейтрализатор. Его остовом является уже знакомый нам «сотовый» керамический блок, однако в нем уже отсутствуют заглушки каналов, то есть газ проходит через «болванку» навылет. Некоторые фирмы применяют блоки, изготовленные из специальной жаростойкой стали. Что лучше — керамика или сталь? На этот вопрос ответ не найден до сих пор. Каждый из них хорош по-своему. Все зависит от доступности компонентов для производства и их цены.

    На внутренние поверхности каналов блока химическим способом нанесено покрытие из оксида алюминия. Благодаря этому поверхность, если ее рассматривать под микроскопом, приобретает вид горного ландшафта, а площадь соприкосновения газового потока с катализаторами, нанесенными поверх оксидной пленки, возрастает на несколько порядков! В роли катализаторов выступают редкоземельные металлы и другие химические элементы таблицы Менделеева. Из наиболее известных отметим платину, палладий, родий, рутиний. Наилучший эффект нейтрализации каждого конкретного компонента выхлопа достигается применением комбинации этих элементов, причем в строго определенной пропорции. Участок нейтрализатора, на котором нанесен конкретный активный состав, называется ступенью. Толщина каталитического слоя покрытия ничтожно мала и определяется фактически на молекулярном уровне.

    Принцип действия нейтрализатора прост. Очищенный от сажи газ поступает в первую ступень нейтрализатора, где происходит активное восстановление оксида азота. В аналогичной по устройству второй ступени протекает процесс окисления углеводородов. Такая последовательность продиктована, в первую очередь, особенностью протекания реакций нейтрализации. Известно, что оксид азота восстанавливается лучше в присутствии оксида углерода. Варьируя состав каталитического покрытия, можно с успехом влиять на склонность того или иного компонента газового выхлопа вступать в химическую реакцию.

    Вот почему одинаковые по конструкции ступени нейтрализатора имеют различный состав каталитического покрытия. Отметим, что нейтрализаторы, как правило, из соображений компоновки выполняются в едином блоке, а обе ступени базируются на одном остове.

    Устройство и принципы работы автомобильных газоанализаторов

    Простой автомобильный однокомпонентный газоанализатор предназначен для измерения содержания в выхлопных газах только оксида углерода СО, главным образом использует способ дожигания не полностью сгоревших компонентов в выхлопных газах. Дожигание СО выполняется в измерительной камере прибора при помощи специальной нагретой нити, при этом изменение температуры нити и характеризует содержание СО в газах. Точность показаний такого газоанализатора невелика и зависит во многом от содержания ещё одного компонента — углеводорода СН.

    Определение содержания вредных веществ в отработанных газах современными многокомпонентными газоанализаторами для автомобиля производится без использования химических реактивов, в основном тепловым (инфракрасным) способом измерения. Метод основан на принципе измерения величины поглощения теплового излучения различными составляющими выхлопных газов. В конструкцию газоанализаторы встроены инфракрасные излучатели и приёмники излучения. Между ними расположены измерительные элементы, в которые подаётся анализируемая смесь. По величине снижения интенсивности инфракрасных лучей, проходящих через газ и поступающих на приёмник, можно определить концентрацию какого-либо компонента в составе газовой смеси.

    Читать еще:  Самые экономичные хэтчбеки

    Помимо измерительных, в газоанализаторе имеются трубки с образцовой газовой смесью. Они служат для непрерывного сравнения степени поглощения теплового излучения в образцовой смеси и в анализируемом газе. Значение этой разницы преобразуется в цифровой или аналоговый вид и передаётся на показывающее или регистрирующее устройство. Перед началом измерений, во избежание появления дополнительных погрешностей газоанализатор необходимо прогреть. Отбор газа производится газозаборной трубкой (зондом). Для очистки поступающих на анализ отработанных газов от сажи, твёрдых частиц и капель воды в трубке предусмотрена установка сменных фильтров и влагоотделителей. Для принудительного прокачивания исследуемых газов по измерительным трубкам используется встроенный насос. Градуировка шкал автомобильных газоанализаторов для О2, СО и СО2 обычно выполняется в процентах, для СН — в миллионных долях (ч.н.млн, ppm), т.е. 1000 ч.н.млн = 0.1%. Таким образом, опытный мастер, используя газоанализатор автомобильных выхлопов, на основании полученной полной информации о процессе сгорания топлива в двигателе сможет сделать правильные выводы о возможных причинах его нарушения.

    Каталитическое обезвреживание выхлопных газов тяжёлой техники

    Тарарыкин А.Г., Успенская А.Ю.

    Что служит основным источником загрязнения воздуха?

    В общем деле загрязнения атмосферы вследствие человеческой деятельности, двигатели внутреннего сгорания (ДВС), безусловно, находятся на первом месте. И не просто лидируют, а значительно опережают все остальные вместе взятые техногенные источники. «Первенство» объясняется просто подавляющим численным преимуществом именно этих загрязнителей, по сравнению с суммой всех остальных техногенных источников.

    Бензиновые ДВС

    Относительно «малотоксичный» бензиновый ДВС, кроме полезной работы, «производит» вредные выбросы в атмосферу, лишь из того, что у него имеется в бензобаке. Поэтому в выхлопе бензинового двигателя содержится какое-то количество недогоревшего топлива (СxНy) и угарного газа (СО). Для успешного их окисления в нейтрализаторе бензинового ДВС существуют вполне благоприятные условия:

    вредные продукты – легко окисляемы, а необходимый для реакции каталитического окисления (сжигания) кислород в достаточном количестве присутствует в выхлопе двигателя.

    Поэтому, нормально отрегулированный бензиновый двигатель, оснащённый каталитическим нейтрализатором выхлопных газов, достаточно легко и надёжно окисляет вредные примеси до безопасных уровней: углекислого газа (CO2) и воды (H2O):

    Дизельный двигатель существенно вреднее своего бензинового «собрата»

    Как источник загрязнения атмосферы, дизельный ДВС существенно более опасен. И дело вовсе не в распространенном заблуждении, что дизельное топливо (в просторечии солярка), якобы – хуже или грязнее бензинов высоких экологических стандартов.

    Дизельный ДВС также, как и работающий на бензине, разумеется, обеспечивает поступление в атмосферу стандартного набора из угарного газа и остатков недогоревшего топлива. К сожалению этим дело не ограничивается. Повышенная опасность дизельных ДВС «обеспечивается» ещё двумя дополнительными и абсолютно объективными причинами. Первая причина. Более высокие параметры работы дизеля, а именно – давление и температура в цилиндрах уже достаточны для запуска процесса химического синтеза высокотоксичного «букета» – оксидов азота, общей формулы (NОх).

    Причём сырьём для этого химического процесса, служат кислород (О2) и азот (N2), то есть обычный чистый воздух, потребляемый дизельным двигателем для работы:

    Ни качество топлива, ни регулировки двигателя, или какиелибо другие параметры не способны отменить законы химии и термодинамики при работе дизельного ДВС. Цилиндры двигателя становятся «химическими реакторами», синтезирующими одни из самых токсичных видов атмосферных загрязнений непосредственно из чистого воздуха.

    Вторая причина повышенной опасности. В то время как нейтрализация выхлопа бензинового ДВС – это окисление примесей имеющимся в достатке кислородом, нейтрализация же оксидов азота NOx – это строго противоположный процесс химического восстановления. И присутствие кислорода в выхлопе двигателя препятствует процессу нейтрализации, вплоть до полного его прекращения. Таким образом, при каталитической нейтрализации токсичных продуктов дизельного ДВС, нужно организовать протекание в нейтрализаторе двух, строго говоря, несовместимых процессов – окисления и восстановления одновременно. Тем не менее, современные разработки катализаторов уже дают примеры достаточно результативного обезвреживания выхлопа дизельных ДВС.

    Дизельные двигатели карьерной, дорожной и строительной техники

    Дизельный ДВС грузового автомобиля, равномерно двигающегося по карьерной дороге или шоссе или его стационарный аналог, например, работающий в составе дизель-электрогенератора, основное время работы выдают полезную мощность в стационарном режиме.

    Существенно снизить вред, наносимый окислами азота организму человека и окружающей среде, в таком случае возможно с помощью современных каталитических нейтрализаторов, например работающих по технологии Селективного Каталитического Восстановления (SCR), где используются специальные катализаторы или даже химические добавкиреагенты.

    Совсем иное дело – работающий экскаватор, оснащённый дизельной силовой установкой. Назвать эксплуатацию его дизельного двигателя «нестационарной» было бы сильным преувеличением: мгновенный набор мощности, остановки, вибрации, рывки и удары, и снова остановки. Ни о каких оптимальных регулировках работы двигателя, здесь не может быть и речи. Процесс дозирования и смешения реагентов, как и сам химический процесс нейтрализации – инерционны, и для режимов работы тяжёлой горной техники – неприменимы по определению. Видимо поэтому на экскаваторах, грейдерах, гидромолотах даже ведущие мировые производители нейтрализаторы не устанавливают, предполагая, что свежий ветер стройки и карьера, способен разогнать облака токсичных выхлопов.

    Наихудший вариант – дизельные двигатели тяжёлой техники, помещенные в шахту, тоннель, глубокий карьер

    В ситуации закрытого объёма (тоннель, шахта, глубокий разрез) все ядовитые компоненты выброса остаются в призабойном пространстве работы машины, где свежего ветра – не предвидится. Даже качественная вентиляция – не способна полностью устранить проблему локальных избыточных концентраций токсичных веществ. А проблема из области экологии переходит в область здоровья и безопасности людей.

    Существуют ли способы разрешения этой проблемы?

    И всё-таки, устранение проблемы возможно с помощью каталитических технологий очистки выхлопных газов ДВС.

    Для этого достаточно использовать грамотно спроектированный каталитический реактор-нейтрализатор, устанавливаемый вместо штатного глушителя.

    В корпусе нейтрализатора располагается перфорированная корзина, куда засыпается гранулированный катализатор (ШПК-1), изготавливаемый на основе специального шарикового носителя с платиной в качестве активного каталитического элемента.

    В комплексе это позволяет преодолеть большинство трудностей, возникающих при эксплуатации в замкнутых объёмах шахт и тоннелей таких сложных объектов, как тяжёлая горная техника. Механические воздействия – вибрации и удары – не сильно сказываются на работоспособности шарикового катализатора. Дымовые выбросы элементарной сажи компенсируются самоочищающимся действием вибрирующего слоя катализатора. Локальные термические перегревы в сочетании с выбросом водяных паров не способны привести к растрескиванию шарикового носителя, как это бывает с монолитными керамическими блоками сотовой структуры, где имеются узкие длинные микроканалы, которые помимо растрескивания, могут забиваться сажей и коксовыми отложениями.

    Отработанная конструкция самого реактора, предусматривающая гранулированную засыпку, исключает необходимость в специальных уплотнениях блоков, термокомпенсациях и прочих ухищрениях. А если нет уплотнений, то, следовательно, нечему и разрушаться, создавая каналы, через которые отработанные газы выбрасываются в атмосферу неочищенными. Такая система проверена несколькими десятилетиями успешной эксплуатации нейтрализаторов.

    Служит ли каталитический нейтрализатор панацеей, снимающей все проблемы?

    Условия эксплуатации, которые рассмотрены в данной статье, не могут принести полного устранения проблемы очистки и токсичных выхлопов. Однако, такие компоненты как угарный газ (СО) и остатки топлива (СХНy) могут быть нейтрализованы практически полностью, а объёмы выбросов наиболее сложных – оксидов азота, за счёт высокого качества катализатора реально снижаются на 15–40%.

    Несколько сотен единиц работающей в нашей стране техники, оснащённой такими нейтрализаторами, реально и ежедневно подтверждают это.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector